Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* rpmalloc.c - Memory allocator - Public Domain - 2016 Mattias Jansson
*
* This library provides a cross-platform lock free thread caching malloc implementation in C11.
* The latest source code is always available at
*
* https://github.com/mjansson/rpmalloc
*
* This library is put in the public domain; you can redistribute it and/or modify it without any restrictions.
*
*/
#include "rpmalloc.h"
/// Build time configurable limits
#ifndef HEAP_ARRAY_SIZE
//! Size of heap hashmap
#define HEAP_ARRAY_SIZE 47
#endif
#ifndef ENABLE_THREAD_CACHE
//! Enable per-thread cache
#define ENABLE_THREAD_CACHE 1
#endif
#ifndef ENABLE_GLOBAL_CACHE
//! Enable global cache shared between all threads, requires thread cache
#define ENABLE_GLOBAL_CACHE 1
#endif
#ifndef ENABLE_VALIDATE_ARGS
//! Enable validation of args to public entry points
#define ENABLE_VALIDATE_ARGS 0
#endif
#ifndef ENABLE_STATISTICS
//! Enable statistics collection
#define ENABLE_STATISTICS 0
#endif
#ifndef ENABLE_ASSERTS
//! Enable asserts
#define ENABLE_ASSERTS 0
#endif
#ifndef ENABLE_OVERRIDE
//! Override standard library malloc/free and new/delete entry points
#define ENABLE_OVERRIDE 0
#endif
#ifndef ENABLE_PRELOAD
//! Support preloading
#define ENABLE_PRELOAD 0
#endif
#ifndef DISABLE_UNMAP
//! Disable unmapping memory pages
#define DISABLE_UNMAP 0
#endif
#ifndef DEFAULT_SPAN_MAP_COUNT
//! Default number of spans to map in call to map more virtual memory (default values yield 4MiB here)
#define DEFAULT_SPAN_MAP_COUNT 64
#endif
#if ENABLE_THREAD_CACHE
#ifndef ENABLE_UNLIMITED_CACHE
//! Unlimited thread and global cache
#define ENABLE_UNLIMITED_CACHE 0
#endif
#ifndef ENABLE_UNLIMITED_THREAD_CACHE
//! Unlimited cache disables any thread cache limitations
#define ENABLE_UNLIMITED_THREAD_CACHE ENABLE_UNLIMITED_CACHE
#endif
#if !ENABLE_UNLIMITED_THREAD_CACHE
#ifndef THREAD_CACHE_MULTIPLIER
//! Multiplier for thread cache (cache limit will be span release count multiplied by this value)
#define THREAD_CACHE_MULTIPLIER 16
#endif
#ifndef ENABLE_ADAPTIVE_THREAD_CACHE
//! Enable adaptive size of per-thread cache (still bounded by THREAD_CACHE_MULTIPLIER hard limit)
#define ENABLE_ADAPTIVE_THREAD_CACHE 0
#endif
#endif
#endif
#if ENABLE_GLOBAL_CACHE && ENABLE_THREAD_CACHE
#ifndef ENABLE_UNLIMITED_GLOBAL_CACHE
//! Unlimited cache disables any global cache limitations
#define ENABLE_UNLIMITED_GLOBAL_CACHE ENABLE_UNLIMITED_CACHE
#endif
#if !ENABLE_UNLIMITED_GLOBAL_CACHE
//! Multiplier for global cache (cache limit will be span release count multiplied by this value)
#define GLOBAL_CACHE_MULTIPLIER (THREAD_CACHE_MULTIPLIER * 6)
#endif
#else
# undef ENABLE_GLOBAL_CACHE
# define ENABLE_GLOBAL_CACHE 0
#endif
#if !ENABLE_THREAD_CACHE || ENABLE_UNLIMITED_THREAD_CACHE
# undef ENABLE_ADAPTIVE_THREAD_CACHE
# define ENABLE_ADAPTIVE_THREAD_CACHE 0
#endif
#if DISABLE_UNMAP && !ENABLE_GLOBAL_CACHE
# error Must use global cache if unmap is disabled
#endif
#if defined( _WIN32 ) || defined( __WIN32__ ) || defined( _WIN64 )
# define PLATFORM_WINDOWS 1
# define PLATFORM_POSIX 0
#else
# define PLATFORM_WINDOWS 0
# define PLATFORM_POSIX 1
#endif
/// Platform and arch specifics
#if defined(_MSC_VER) && !defined(__clang__)
# define FORCEINLINE inline __forceinline
# define _Static_assert static_assert
#else
# define FORCEINLINE inline __attribute__((__always_inline__))
#endif
#if PLATFORM_WINDOWS
# define WIN32_LEAN_AND_MEAN
# include <windows.h>
# if ENABLE_VALIDATE_ARGS
# include <Intsafe.h>
# endif
#else
# include <unistd.h>
# include <stdio.h>
# include <stdlib.h>
# if defined(__APPLE__)
# include <mach/mach_vm.h>
# include <pthread.h>
# endif
# if defined(__HAIKU__)
# include <OS.h>
# include <pthread.h>
# endif
#endif
#include <stdint.h>
#include <string.h>
#if ENABLE_ASSERTS
# undef NDEBUG
# if defined(_MSC_VER) && !defined(_DEBUG)
# define _DEBUG
# endif
# include <assert.h>
#else
# undef assert
# define assert(x) do {} while(0)
#endif
#if ENABLE_STATISTICS
# include <stdio.h>
#endif
/// Atomic access abstraction
#if defined(_MSC_VER) && !defined(__clang__)
typedef volatile long atomic32_t;
typedef volatile long long atomic64_t;
typedef volatile void* atomicptr_t;
#define atomic_thread_fence_acquire()
#define atomic_thread_fence_release()
static FORCEINLINE int32_t atomic_load32(atomic32_t* src) { return *src; }
static FORCEINLINE void atomic_store32(atomic32_t* dst, int32_t val) { *dst = val; }
static FORCEINLINE int32_t atomic_incr32(atomic32_t* val) { return (int32_t)_InterlockedExchangeAdd(val, 1) + 1; }
static FORCEINLINE int32_t atomic_add32(atomic32_t* val, int32_t add) { return (int32_t)_InterlockedExchangeAdd(val, add) + add; }
static FORCEINLINE void* atomic_load_ptr(atomicptr_t* src) { return (void*)*src; }
static FORCEINLINE void atomic_store_ptr(atomicptr_t* dst, void* val) { *dst = val; }
# if defined(__LLP64__) || defined(__LP64__) || defined(_WIN64)
static FORCEINLINE int atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref) { return (_InterlockedCompareExchange64((volatile long long*)dst, (long long)val, (long long)ref) == (long long)ref) ? 1 : 0; }
#else
static FORCEINLINE int atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref) { return (_InterlockedCompareExchange((volatile long*)dst, (long)val, (long)ref) == (long)ref) ? 1 : 0; }
#endif
#define EXPECTED(x) (x)
#define UNEXPECTED(x) (x)
#else
#include <stdatomic.h>
typedef volatile _Atomic(int32_t) atomic32_t;
typedef volatile _Atomic(int64_t) atomic64_t;
typedef volatile _Atomic(void*) atomicptr_t;
#define atomic_thread_fence_acquire() atomic_thread_fence(memory_order_acquire)
#define atomic_thread_fence_release() atomic_thread_fence(memory_order_release)
static FORCEINLINE int32_t atomic_load32(atomic32_t* src) { return atomic_load_explicit(src, memory_order_relaxed); }
static FORCEINLINE void atomic_store32(atomic32_t* dst, int32_t val) { atomic_store_explicit(dst, val, memory_order_relaxed); }
static FORCEINLINE int32_t atomic_incr32(atomic32_t* val) { return atomic_fetch_add_explicit(val, 1, memory_order_relaxed) + 1; }
static FORCEINLINE int32_t atomic_add32(atomic32_t* val, int32_t add) { return atomic_fetch_add_explicit(val, add, memory_order_relaxed) + add; }
static FORCEINLINE void* atomic_load_ptr(atomicptr_t* src) { return atomic_load_explicit(src, memory_order_relaxed); }
static FORCEINLINE void atomic_store_ptr(atomicptr_t* dst, void* val) { atomic_store_explicit(dst, val, memory_order_relaxed); }
static FORCEINLINE int atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref) { return atomic_compare_exchange_weak_explicit(dst, &ref, val, memory_order_release, memory_order_acquire); }
#define EXPECTED(x) __builtin_expect((x), 1)
#define UNEXPECTED(x) __builtin_expect((x), 0)
#endif
/// Preconfigured limits and sizes
//! Granularity of a small allocation block
#define SMALL_GRANULARITY 16
//! Small granularity shift count
#define SMALL_GRANULARITY_SHIFT 4
//! Number of small block size classes
#define SMALL_CLASS_COUNT 65
//! Maximum size of a small block
#define SMALL_SIZE_LIMIT (SMALL_GRANULARITY * (SMALL_CLASS_COUNT - 1))
//! Granularity of a medium allocation block
#define MEDIUM_GRANULARITY 512
//! Medium granularity shift count
#define MEDIUM_GRANULARITY_SHIFT 9
//! Number of medium block size classes
#define MEDIUM_CLASS_COUNT 61
//! Total number of small + medium size classes
#define SIZE_CLASS_COUNT (SMALL_CLASS_COUNT + MEDIUM_CLASS_COUNT)
//! Number of large block size classes
#define LARGE_CLASS_COUNT 32
//! Maximum size of a medium block
#define MEDIUM_SIZE_LIMIT (SMALL_SIZE_LIMIT + (MEDIUM_GRANULARITY * MEDIUM_CLASS_COUNT))
//! Maximum size of a large block
#define LARGE_SIZE_LIMIT ((LARGE_CLASS_COUNT * _memory_span_size) - SPAN_HEADER_SIZE)
//! Size of a span header (must be a multiple of SMALL_GRANULARITY)
#define SPAN_HEADER_SIZE 96
#if ENABLE_VALIDATE_ARGS
//! Maximum allocation size to avoid integer overflow
#undef MAX_ALLOC_SIZE
#define MAX_ALLOC_SIZE (((size_t)-1) - _memory_span_size)
#endif
#define pointer_offset(ptr, ofs) (void*)((char*)(ptr) + (ptrdiff_t)(ofs))
#define pointer_diff(first, second) (ptrdiff_t)((const char*)(first) - (const char*)(second))
#define INVALID_POINTER ((void*)((uintptr_t)-1))
/// Data types
//! A memory heap, per thread
typedef struct heap_t heap_t;
//! Heap spans per size class
typedef struct heap_class_t heap_class_t;
//! Span of memory pages
typedef struct span_t span_t;
//! Span list
typedef struct span_list_t span_list_t;
//! Span active data
typedef struct span_active_t span_active_t;
//! Size class definition
typedef struct size_class_t size_class_t;
//! Global cache
typedef struct global_cache_t global_cache_t;
//! Flag indicating span is the first (master) span of a split superspan
#define SPAN_FLAG_MASTER 1U
//! Flag indicating span is a secondary (sub) span of a split superspan
#define SPAN_FLAG_SUBSPAN 2U
//! Flag indicating span has blocks with increased alignment
#define SPAN_FLAG_ALIGNED_BLOCKS 4U
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
struct span_use_t {
//! Current number of spans used (actually used, not in cache)
uint32_t current;
//! High water mark of spans used
uint32_t high;
#if ENABLE_STATISTICS
//! Number of spans transitioned to global cache
uint32_t spans_to_global;
//! Number of spans transitioned from global cache
uint32_t spans_from_global;
//! Number of spans transitioned to thread cache
uint32_t spans_to_cache;
//! Number of spans transitioned from thread cache
uint32_t spans_from_cache;
//! Number of spans transitioned to reserved state
uint32_t spans_to_reserved;
//! Number of spans transitioned from reserved state
uint32_t spans_from_reserved;
//! Number of raw memory map calls
uint32_t spans_map_calls;
#endif
};
typedef struct span_use_t span_use_t;
#endif
#if ENABLE_STATISTICS
struct size_class_use_t {
//! Current number of allocations
atomic32_t alloc_current;
//! Peak number of allocations
int32_t alloc_peak;
//! Total number of allocations
int32_t alloc_total;
//! Total number of frees
atomic32_t free_total;
//! Number of spans transitioned to cache
uint32_t spans_to_cache;
//! Number of spans transitioned from cache
uint32_t spans_from_cache;
//! Number of spans transitioned from reserved state
uint32_t spans_from_reserved;
//! Number of spans mapped
uint32_t spans_map_calls;
};
typedef struct size_class_use_t size_class_use_t;
#endif
typedef enum span_state_t {
SPAN_STATE_ACTIVE = 0,
SPAN_STATE_PARTIAL,
SPAN_STATE_FULL
} span_state_t;
//A span can either represent a single span of memory pages with size declared by span_map_count configuration variable,
//or a set of spans in a continuous region, a super span. Any reference to the term "span" usually refers to both a single
//span or a super span. A super span can further be divided into multiple spans (or this, super spans), where the first
//(super)span is the master and subsequent (super)spans are subspans. The master span keeps track of how many subspans
//that are still alive and mapped in virtual memory, and once all subspans and master have been unmapped the entire
//superspan region is released and unmapped (on Windows for example, the entire superspan range has to be released
//in the same call to release the virtual memory range, but individual subranges can be decommitted individually
//to reduce physical memory use).
struct span_t {
//! Free list
void* free_list;
//! State
uint32_t state;
//! Used count when not active (not including deferred free list)
uint32_t used_count;
//! Block count
uint32_t block_count;
//! Size class
uint32_t size_class;
//! Index of last block initialized in free list
uint32_t free_list_limit;
//! Span list size when part of a cache list, or size of deferred free list when partial/full
uint32_t list_size;
//! Deferred free list
atomicptr_t free_list_deferred;
//! Size of a block
uint32_t block_size;
//! Flags and counters
uint32_t flags;
//! Number of spans
uint32_t span_count;
//! Total span counter for master spans, distance for subspans
uint32_t total_spans_or_distance;
//! Remaining span counter, for master spans
atomic32_t remaining_spans;
//! Alignment offset
uint32_t align_offset;
//! Owning heap
heap_t* heap;
//! Next span
span_t* next;
//! Previous span
span_t* prev;
};
_Static_assert(sizeof(span_t) <= SPAN_HEADER_SIZE, "span size mismatch");
struct heap_class_t {
//! Free list of active span
void* free_list;
//! Double linked list of partially used spans with free blocks for each size class.
// Current active span is at head of list. Previous span pointer in head points to tail span of list.
span_t* partial_span;
};
struct heap_t {
//! Active and semi-used span data per size class
heap_class_t span_class[SIZE_CLASS_COUNT];
#if ENABLE_THREAD_CACHE
//! List of free spans (single linked list)
span_t* span_cache[LARGE_CLASS_COUNT];
//! List of deferred free spans of class 0 (single linked list)
atomicptr_t span_cache_deferred;
#endif
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
//! Current and high water mark of spans used per span count
span_use_t span_use[LARGE_CLASS_COUNT];
#endif
//! Mapped but unused spans
span_t* span_reserve;
//! Master span for mapped but unused spans
span_t* span_reserve_master;
//! Number of mapped but unused spans
size_t spans_reserved;
//! Next heap in id list
heap_t* next_heap;
//! Next heap in orphan list
heap_t* next_orphan;
//! Memory pages alignment offset
size_t align_offset;
//! Heap ID
int32_t id;
#if ENABLE_STATISTICS
//! Number of bytes transitioned thread -> global
size_t thread_to_global;
//! Number of bytes transitioned global -> thread
size_t global_to_thread;
//! Allocation stats per size class
size_class_use_t size_class_use[SIZE_CLASS_COUNT + 1];
#endif
};
struct size_class_t {
//! Size of blocks in this class
uint32_t block_size;
//! Number of blocks in each chunk
uint16_t block_count;
//! Class index this class is merged with
uint16_t class_idx;
};
_Static_assert(sizeof(size_class_t) == 8, "Size class size mismatch");
struct global_cache_t {
//! Cache list pointer
atomicptr_t cache;
//! Cache size
atomic32_t size;
//! ABA counter
atomic32_t counter;
};
/// Global data
//! Initialized flag
static int _rpmalloc_initialized;
//! Configuration
static rpmalloc_config_t _memory_config;
//! Memory page size
static size_t _memory_page_size;
//! Shift to divide by page size
static size_t _memory_page_size_shift;
//! Granularity at which memory pages are mapped by OS
static size_t _memory_map_granularity;
#if RPMALLOC_CONFIGURABLE
//! Size of a span of memory pages
static size_t _memory_span_size;
//! Shift to divide by span size
static size_t _memory_span_size_shift;
//! Mask to get to start of a memory span
static uintptr_t _memory_span_mask;
#else
//! Hardwired span size (64KiB)
#define _memory_span_size (64 * 1024)
#define _memory_span_size_shift 16
#define _memory_span_mask (~((uintptr_t)(_memory_span_size - 1)))
#endif
//! Number of spans to map in each map call
static size_t _memory_span_map_count;
//! Number of spans to release from thread cache to global cache (single spans)
static size_t _memory_span_release_count;
//! Number of spans to release from thread cache to global cache (large multiple spans)
static size_t _memory_span_release_count_large;
//! Global size classes
static size_class_t _memory_size_class[SIZE_CLASS_COUNT];
//! Run-time size limit of medium blocks
static size_t _memory_medium_size_limit;
//! Heap ID counter
static atomic32_t _memory_heap_id;
//! Huge page support
static int _memory_huge_pages;
#if ENABLE_GLOBAL_CACHE
//! Global span cache
static global_cache_t _memory_span_cache[LARGE_CLASS_COUNT];
#endif
//! All heaps
static atomicptr_t _memory_heaps[HEAP_ARRAY_SIZE];
//! Orphaned heaps
static atomicptr_t _memory_orphan_heaps;
//! Running orphan counter to avoid ABA issues in linked list
static atomic32_t _memory_orphan_counter;
#if ENABLE_STATISTICS
//! Active heap count
static atomic32_t _memory_active_heaps;
//! Number of currently mapped memory pages
static atomic32_t _mapped_pages;
//! Peak number of concurrently mapped memory pages
static int32_t _mapped_pages_peak;
//! Number of currently unused spans
static atomic32_t _reserved_spans;
//! Running counter of total number of mapped memory pages since start
static atomic32_t _mapped_total;
//! Running counter of total number of unmapped memory pages since start
static atomic32_t _unmapped_total;
//! Number of currently mapped memory pages in OS calls
static atomic32_t _mapped_pages_os;
//! Number of currently allocated pages in huge allocations
static atomic32_t _huge_pages_current;
//! Peak number of currently allocated pages in huge allocations
static int32_t _huge_pages_peak;
#endif
//! Current thread heap
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
static pthread_key_t _memory_thread_heap;
#else
# ifdef _MSC_VER
# define _Thread_local __declspec(thread)
# define TLS_MODEL
# else
# define TLS_MODEL __attribute__((tls_model("initial-exec")))
# if !defined(__clang__) && defined(__GNUC__)
# define _Thread_local __thread
# endif
# endif
static _Thread_local heap_t* _memory_thread_heap TLS_MODEL;
#endif
static inline heap_t*
get_thread_heap_raw(void) {
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
return pthread_getspecific(_memory_thread_heap);
#else
return _memory_thread_heap;
#endif
}
//! Get the current thread heap
static inline heap_t*
get_thread_heap(void) {
heap_t* heap = get_thread_heap_raw();
#if ENABLE_PRELOAD
if (EXPECTED(heap != 0))
return heap;
rpmalloc_initialize();
return get_thread_heap_raw();
#else
return heap;
#endif
}
//! Set the current thread heap
static void
set_thread_heap(heap_t* heap) {
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
pthread_setspecific(_memory_thread_heap, heap);
#else
_memory_thread_heap = heap;
#endif
}
//! Default implementation to map more virtual memory
static void*
_memory_map_os(size_t size, size_t* offset);
//! Default implementation to unmap virtual memory
static void
_memory_unmap_os(void* address, size_t size, size_t offset, size_t release);
//! Lookup a memory heap from heap ID
static heap_t*
_memory_heap_lookup(int32_t id) {
uint32_t list_idx = id % HEAP_ARRAY_SIZE;
heap_t* heap = atomic_load_ptr(&_memory_heaps[list_idx]);
while (heap && (heap->id != id))
heap = heap->next_heap;
return heap;
}
#if ENABLE_STATISTICS
# define _memory_statistics_inc(counter, value) counter += value
# define _memory_statistics_add(atomic_counter, value) atomic_add32(atomic_counter, (int32_t)(value))
# define _memory_statistics_add_peak(atomic_counter, value, peak) do { int32_t _cur_count = atomic_add32(atomic_counter, (int32_t)(value)); if (_cur_count > (peak)) peak = _cur_count; } while (0)
# define _memory_statistics_sub(atomic_counter, value) atomic_add32(atomic_counter, -(int32_t)(value))
# define _memory_statistics_inc_alloc(heap, class_idx) do { \
int32_t alloc_current = atomic_incr32(&heap->size_class_use[class_idx].alloc_current); \
if (alloc_current > heap->size_class_use[class_idx].alloc_peak) \
heap->size_class_use[class_idx].alloc_peak = alloc_current; \
heap->size_class_use[class_idx].alloc_total++; \
} while(0)
# define _memory_statistics_inc_free(heap, class_idx) do { \
atomic_add32(&heap->size_class_use[class_idx].alloc_current, -1); \
atomic_incr32(&heap->size_class_use[class_idx].free_total); \
} while(0)
#else
# define _memory_statistics_inc(counter, value) do {} while(0)
# define _memory_statistics_add(atomic_counter, value) do {} while(0)
# define _memory_statistics_add_peak(atomic_counter, value, peak) do {} while (0)
# define _memory_statistics_sub(atomic_counter, value) do {} while(0)
# define _memory_statistics_inc_alloc(heap, class_idx) do {} while(0)
# define _memory_statistics_inc_free(heap, class_idx) do {} while(0)
#endif
static void
_memory_heap_cache_insert(heap_t* heap, span_t* span);
//! Map more virtual memory
static void*
_memory_map(size_t size, size_t* offset) {
assert(!(size % _memory_page_size));
assert(size >= _memory_page_size);
_memory_statistics_add_peak(&_mapped_pages, (size >> _memory_page_size_shift), _mapped_pages_peak);
_memory_statistics_add(&_mapped_total, (size >> _memory_page_size_shift));
return _memory_config.memory_map(size, offset);
}
//! Unmap virtual memory
static void
_memory_unmap(void* address, size_t size, size_t offset, size_t release) {
assert(!release || (release >= size));
assert(!release || (release >= _memory_page_size));
if (release) {
assert(!(release % _memory_page_size));
_memory_statistics_sub(&_mapped_pages, (release >> _memory_page_size_shift));
_memory_statistics_add(&_unmapped_total, (release >> _memory_page_size_shift));
}
_memory_config.memory_unmap(address, size, offset, release);
}
//! Declare the span to be a subspan and store distance from master span and span count
static void
_memory_span_mark_as_subspan_unless_master(span_t* master, span_t* subspan, size_t span_count) {
assert((subspan != master) || (subspan->flags & SPAN_FLAG_MASTER));
if (subspan != master) {
subspan->flags = SPAN_FLAG_SUBSPAN;
subspan->total_spans_or_distance = (uint32_t)((uintptr_t)pointer_diff(subspan, master) >> _memory_span_size_shift);
subspan->align_offset = 0;
}
subspan->span_count = (uint32_t)span_count;
}
//! Use reserved spans to fulfill a memory map request (reserve size must be checked by caller)
static span_t*
_memory_map_from_reserve(heap_t* heap, size_t span_count) {
//Update the heap span reserve
span_t* span = heap->span_reserve;
heap->span_reserve = pointer_offset(span, span_count * _memory_span_size);
heap->spans_reserved -= span_count;
_memory_span_mark_as_subspan_unless_master(heap->span_reserve_master, span, span_count);
if (span_count <= LARGE_CLASS_COUNT)
_memory_statistics_inc(heap->span_use[span_count - 1].spans_from_reserved, 1);
return span;
}
//! Get the aligned number of spans to map in based on wanted count, configured mapping granularity and the page size
static size_t
_memory_map_align_span_count(size_t span_count) {
size_t request_count = (span_count > _memory_span_map_count) ? span_count : _memory_span_map_count;
if ((_memory_page_size > _memory_span_size) && ((request_count * _memory_span_size) % _memory_page_size))
request_count += _memory_span_map_count - (request_count % _memory_span_map_count);
return request_count;
}
//! Store the given spans as reserve in the given heap
static void
_memory_heap_set_reserved_spans(heap_t* heap, span_t* master, span_t* reserve, size_t reserve_span_count) {
heap->span_reserve_master = master;
heap->span_reserve = reserve;
heap->spans_reserved = reserve_span_count;
}
//! Setup a newly mapped span
static void
_memory_span_initialize(span_t* span, size_t total_span_count, size_t span_count, size_t align_offset) {
span->total_spans_or_distance = (uint32_t)total_span_count;
span->span_count = (uint32_t)span_count;
span->align_offset = (uint32_t)align_offset;
span->flags = SPAN_FLAG_MASTER;
atomic_store32(&span->remaining_spans, (int32_t)total_span_count);
}
//! Map a akigned set of spans, taking configured mapping granularity and the page size into account
static span_t*
_memory_map_aligned_span_count(heap_t* heap, size_t span_count) {
//If we already have some, but not enough, reserved spans, release those to heap cache and map a new
//full set of spans. Otherwise we would waste memory if page size > span size (huge pages)
size_t aligned_span_count = _memory_map_align_span_count(span_count);
size_t align_offset = 0;
span_t* span = _memory_map(aligned_span_count * _memory_span_size, &align_offset);
if (!span)
return 0;
_memory_span_initialize(span, aligned_span_count, span_count, align_offset);
_memory_statistics_add(&_reserved_spans, aligned_span_count);
if (span_count <= LARGE_CLASS_COUNT)
_memory_statistics_inc(heap->span_use[span_count - 1].spans_map_calls, 1);
if (aligned_span_count > span_count) {
if (heap->spans_reserved) {
_memory_span_mark_as_subspan_unless_master(heap->span_reserve_master, heap->span_reserve, heap->spans_reserved);
_memory_heap_cache_insert(heap, heap->span_reserve);
}
_memory_heap_set_reserved_spans(heap, span, pointer_offset(span, span_count * _memory_span_size), aligned_span_count - span_count);
}
return span;
}
//! Map in memory pages for the given number of spans (or use previously reserved pages)
static span_t*
_memory_map_spans(heap_t* heap, size_t span_count) {
if (span_count <= heap->spans_reserved)
return _memory_map_from_reserve(heap, span_count);
return _memory_map_aligned_span_count(heap, span_count);
}
//! Unmap memory pages for the given number of spans (or mark as unused if no partial unmappings)
static void
_memory_unmap_span(span_t* span) {
assert((span->flags & SPAN_FLAG_MASTER) || (span->flags & SPAN_FLAG_SUBSPAN));
assert(!(span->flags & SPAN_FLAG_MASTER) || !(span->flags & SPAN_FLAG_SUBSPAN));
int is_master = !!(span->flags & SPAN_FLAG_MASTER);
span_t* master = is_master ? span : (pointer_offset(span, -(int32_t)(span->total_spans_or_distance * _memory_span_size)));
assert(is_master || (span->flags & SPAN_FLAG_SUBSPAN));
assert(master->flags & SPAN_FLAG_MASTER);
size_t span_count = span->span_count;
if (!is_master) {
//Directly unmap subspans (unless huge pages, in which case we defer and unmap entire page range with master)
assert(span->align_offset == 0);
if (_memory_span_size >= _memory_page_size) {
_memory_unmap(span, span_count * _memory_span_size, 0, 0);
_memory_statistics_sub(&_reserved_spans, span_count);
}
} else {
//Special double flag to denote an unmapped master
//It must be kept in memory since span header must be used
span->flags |= SPAN_FLAG_MASTER | SPAN_FLAG_SUBSPAN;
}
if (atomic_add32(&master->remaining_spans, -(int32_t)span_count) <= 0) {
//Everything unmapped, unmap the master span with release flag to unmap the entire range of the super span
assert(!!(master->flags & SPAN_FLAG_MASTER) && !!(master->flags & SPAN_FLAG_SUBSPAN));
size_t unmap_count = master->span_count;
if (_memory_span_size < _memory_page_size)
unmap_count = master->total_spans_or_distance;
_memory_statistics_sub(&_reserved_spans, unmap_count);
_memory_unmap(master, unmap_count * _memory_span_size, master->align_offset, master->total_spans_or_distance * _memory_span_size);
}
}
#if ENABLE_THREAD_CACHE
//! Unmap a single linked list of spans
static void
_memory_unmap_span_list(span_t* span) {
size_t list_size = span->list_size;
for (size_t ispan = 0; ispan < list_size; ++ispan) {
span_t* next_span = span->next;
_memory_unmap_span(span);
span = next_span;
}
assert(!span);
}
//! Add span to head of single linked span list
static size_t
_memory_span_list_push(span_t** head, span_t* span) {
span->next = *head;
if (*head)
span->list_size = (*head)->list_size + 1;
else
span->list_size = 1;
*head = span;
return span->list_size;
}
//! Remove span from head of single linked span list, returns the new list head
static span_t*
_memory_span_list_pop(span_t** head) {
span_t* span = *head;
span_t* next_span = 0;
if (span->list_size > 1) {
assert(span->next);
next_span = span->next;
assert(next_span);
next_span->list_size = span->list_size - 1;
}
*head = next_span;
return span;
}
//! Split a single linked span list
static span_t*
_memory_span_list_split(span_t* span, size_t limit) {
span_t* next = 0;
if (limit < 2)
limit = 2;
if (span->list_size > limit) {
uint32_t list_size = 1;
span_t* last = span;
next = span->next;
while (list_size < limit) {
last = next;
next = next->next;
++list_size;
}
last->next = 0;
assert(next);
next->list_size = span->list_size - list_size;
span->list_size = list_size;
span->prev = 0;
}
return next;
}
#endif
//! Add a span to partial span double linked list at the head
static void
_memory_span_partial_list_add(span_t** head, span_t* span) {
if (*head) {
span->next = *head;
//Maintain pointer to tail span
span->prev = (*head)->prev;
(*head)->prev = span;
} else {
span->next = 0;
span->prev = span;
}
*head = span;
}
//! Add a span to partial span double linked list at the tail
static void
_memory_span_partial_list_add_tail(span_t** head, span_t* span) {
span->next = 0;
if (*head) {
span_t* tail = (*head)->prev;
tail->next = span;
span->prev = tail;
//Maintain pointer to tail span
(*head)->prev = span;
} else {
span->prev = span;
*head = span;
}
}
//! Pop head span from partial span double linked list
static void
_memory_span_partial_list_pop_head(span_t** head) {
span_t* span = *head;
*head = span->next;
if (*head) {
//Maintain pointer to tail span
(*head)->prev = span->prev;
}
}
//! Remove a span from partial span double linked list
static void
_memory_span_partial_list_remove(span_t** head, span_t* span) {
if (UNEXPECTED(*head == span)) {
_memory_span_partial_list_pop_head(head);
} else {
span_t* next_span = span->next;
span_t* prev_span = span->prev;
prev_span->next = next_span;
if (EXPECTED(next_span != 0)) {
next_span->prev = prev_span;
} else {
//Update pointer to tail span
(*head)->prev = prev_span;
}
}
}
#if ENABLE_GLOBAL_CACHE
//! Insert the given list of memory page spans in the global cache
static void
_memory_cache_insert(global_cache_t* cache, span_t* span, size_t cache_limit) {
assert((span->list_size == 1) || (span->next != 0));
int32_t list_size = (int32_t)span->list_size;
//Unmap if cache has reached the limit
if (atomic_add32(&cache->size, list_size) > (int32_t)cache_limit) {
#if !ENABLE_UNLIMITED_GLOBAL_CACHE
_memory_unmap_span_list(span);
atomic_add32(&cache->size, -list_size);
return;
#endif
}
void* current_cache, *new_cache;
do {
current_cache = atomic_load_ptr(&cache->cache);
span->prev = (void*)((uintptr_t)current_cache & _memory_span_mask);
new_cache = (void*)((uintptr_t)span | ((uintptr_t)atomic_incr32(&cache->counter) & ~_memory_span_mask));
} while (!atomic_cas_ptr(&cache->cache, new_cache, current_cache));
}
//! Extract a number of memory page spans from the global cache
static span_t*
_memory_cache_extract(global_cache_t* cache) {
uintptr_t span_ptr;
do {
void* global_span = atomic_load_ptr(&cache->cache);
span_ptr = (uintptr_t)global_span & _memory_span_mask;
if (span_ptr) {
span_t* span = (void*)span_ptr;
//By accessing the span ptr before it is swapped out of list we assume that a contending thread
//does not manage to traverse the span to being unmapped before we access it
void* new_cache = (void*)((uintptr_t)span->prev | ((uintptr_t)atomic_incr32(&cache->counter) & ~_memory_span_mask));
if (atomic_cas_ptr(&cache->cache, new_cache, global_span)) {
atomic_add32(&cache->size, -(int32_t)span->list_size);
return span;
}
}
} while (span_ptr);
return 0;
}
//! Finalize a global cache, only valid from allocator finalization (not thread safe)
static void
_memory_cache_finalize(global_cache_t* cache) {
void* current_cache = atomic_load_ptr(&cache->cache);
span_t* span = (void*)((uintptr_t)current_cache & _memory_span_mask);
while (span) {
span_t* skip_span = (void*)((uintptr_t)span->prev & _memory_span_mask);
atomic_add32(&cache->size, -(int32_t)span->list_size);
_memory_unmap_span_list(span);
span = skip_span;
}
assert(!atomic_load32(&cache->size));
atomic_store_ptr(&cache->cache, 0);
atomic_store32(&cache->size, 0);
}
//! Insert the given list of memory page spans in the global cache
static void
_memory_global_cache_insert(span_t* span) {
size_t span_count = span->span_count;
#if ENABLE_UNLIMITED_GLOBAL_CACHE
_memory_cache_insert(&_memory_span_cache[span_count - 1], span, 0);
#else
const size_t cache_limit = (GLOBAL_CACHE_MULTIPLIER * ((span_count == 1) ? _memory_span_release_count : _memory_span_release_count_large));
_memory_cache_insert(&_memory_span_cache[span_count - 1], span, cache_limit);
#endif
}
//! Extract a number of memory page spans from the global cache for large blocks
static span_t*
_memory_global_cache_extract(size_t span_count) {
span_t* span = _memory_cache_extract(&_memory_span_cache[span_count - 1]);
assert(!span || (span->span_count == span_count));
return span;
}
#endif
#if ENABLE_THREAD_CACHE
//! Adopt the deferred span cache list
static void
_memory_heap_cache_adopt_deferred(heap_t* heap) {
atomic_thread_fence_acquire();
span_t* span = atomic_load_ptr(&heap->span_cache_deferred);
if (!span)
return;
do {
span = atomic_load_ptr(&heap->span_cache_deferred);
} while (!atomic_cas_ptr(&heap->span_cache_deferred, 0, span));
while (span) {
span_t* next_span = span->next;
_memory_span_list_push(&heap->span_cache[0], span);
#if ENABLE_STATISTICS
heap->size_class_use[span->size_class].spans_to_cache++;
#endif
span = next_span;
}
}
#endif
//! Insert a single span into thread heap cache, releasing to global cache if overflow
static void
_memory_heap_cache_insert(heap_t* heap, span_t* span) {
#if ENABLE_THREAD_CACHE
size_t span_count = span->span_count;
size_t idx = span_count - 1;
_memory_statistics_inc(heap->span_use[idx].spans_to_cache, 1);
if (!idx)
_memory_heap_cache_adopt_deferred(heap);
#if ENABLE_UNLIMITED_THREAD_CACHE
_memory_span_list_push(&heap->span_cache[idx], span);
#else
const size_t release_count = (!idx ? _memory_span_release_count : _memory_span_release_count_large);
size_t current_cache_size = _memory_span_list_push(&heap->span_cache[idx], span);
if (current_cache_size <= release_count)
return;
const size_t hard_limit = release_count * THREAD_CACHE_MULTIPLIER;
if (current_cache_size <= hard_limit) {
#if ENABLE_ADAPTIVE_THREAD_CACHE
//Require 25% of high water mark to remain in cache (and at least 1, if use is 0)
const size_t high_mark = heap->span_use[idx].high;
const size_t min_limit = (high_mark >> 2) + release_count + 1;
if (current_cache_size < min_limit)
return;
#else
return;
#endif
}
heap->span_cache[idx] = _memory_span_list_split(span, release_count);
assert(span->list_size == release_count);
#if ENABLE_STATISTICS
heap->thread_to_global += (size_t)span->list_size * span_count * _memory_span_size;
heap->span_use[idx].spans_to_global += span->list_size;
#endif
#if ENABLE_GLOBAL_CACHE
_memory_global_cache_insert(span);
#else